14 research outputs found

    Preliminary evaluation of the CellFinder literature curation pipeline for gene expression in kidney cells and anatomical parts

    Get PDF
    Biomedical literature curation is the process of automatically and/or manually deriving knowledge from scientific publications and recording it into specialized databases for structured delivery to users. It is a slow, error-prone, complex, costly and, yet, highly important task. Previous experiences have proven that text mining can assist in its many phases, especially, in triage of relevant documents and extraction of named entities and biological events. Here, we present the curation pipeline of the CellFinder database, a repository of cell research, which includes data derived from literature curation and microarrays to identify cell types, cell lines, organs and so forth, and especially patterns in gene expression. The curation pipeline is based on freely available tools in all text mining steps, as well as the manual validation of extracted data. Preliminary results are presented for a data set of 2376 full texts from which >4500 gene expression events in cell or anatomical part have been extracted. Validation of half of this data resulted in a precision of ~50% of the extracted data, which indicates that we are on the right track with our pipeline for the proposed task. However, evaluation of the methods shows that there is still room for improvement in the named-entity recognition and that a larger and more robust corpus is needed to achieve a better performance for event extraction. Database URL: http://www.cellfinder.org

    CELDA - an ontology for the comprehensive representation of cells in complex systems

    Get PDF
    BACKGROUND: The need for detailed description and modeling of cells drives the continuous generation of large and diverse datasets. Unfortunately, there exists no systematic and comprehensive way to organize these datasets and their information. CELDA (Cell: Expression, Localization, Development, Anatomy) is a novel ontology for the association of primary experimental data and derived knowledge to various types of cells of organisms. RESULTS: CELDA is a structure that can help to categorize cell types based on species, anatomical localization, subcellular structures, developmental stages and origin. It targets cells in vitro as well as in vivo. Instead of developing a novel ontology from scratch, we carefully designed CELDA in such a way that existing ontologies were integrated as much as possible, and only minimal extensions were performed to cover those classes and areas not present in any existing model. Currently, ten existing ontologies and models are linked to CELDA through the top-level ontology BioTop. Together with 15.439 newly created classes, CELDA contains more than 196.000 classes and 233.670 relationship axioms. CELDA is primarily used as a representational framework for modeling, analyzing and comparing cells within and across species in CellFinder, a web based data repository on cells (http://cellfinder.org). CONCLUSIONS: CELDA can semantically link diverse types of information about cell types. It has been integrated within the research platform CellFinder, where it exemplarily relates cell types from liver and kidney during development on the one hand and anatomical locations in humans on the other, integrating information on all spatial and temporal stages. CELDA is available from the CellFinder website: http://cellfinder.org/about/ontology

    CellFinder: a cell data repository

    Get PDF
    CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder's data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder's web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians

    Genome-wide enhancer maps link risk variants to disease genes

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complextraits, each of which could reveal insights into the mechanisms of disease(1). Many ofthe underlying causal variants may affect enhancers(2,3), but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types(4). Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577genesthat appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.Peer reviewe

    The 4D nucleome project

    Get PDF

    Kooperation als Experiment

    No full text

    A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells

    Get PDF
    Unambiguous cell line authentication is essential to avoid loss of association between data and cells. The risk for loss of references increases with the rapidity that new human pluripotent stem cell (hPSC) lines are generated, exchanged, and implemented. Ideally, a single name should be used as a generally applied reference for each cell line to access and unify cell-related information across publications, cell banks, cell registries, and databases and to ensure scientific reproducibility. We discuss the needs and requirements for such a unique identifier and implement a standard nomenclature for hPSCs, which can be automatically generated and registered by the human pluripotent stem cell registry (hPSCreg). To avoid ambiguities in PSC-line referencing, we strongly urge publishers to demand registration and use of the standard name when publishing research based on hPSC lines
    corecore